载入中...
 
 
低温热水地面辐射采暖用定压膨胀水箱计算
[ 2014-4-11 16:39:00 | By: 21gssb ]
 

低温热水地面辐射采暖用定压膨胀水箱计算

  查阅文献[2],动力循环供热工程膨胀水箱容积计算公式如式1

  Vp=αΔtmax·Vc 1

  式中:Vp——膨胀水箱有效容积(即信号管到溢流管之间的容积)L;

  α ——水的体积膨胀系数,α=0.00061/;

  Vc——系统内的水容量,L;

  Δtmax——考虑系统内水受热和冷却时水温最大波动值,一般以20水温算起。

  文献[4]规定低温热水地面辐射采暖供水温度不超过60。实际工程中,一般按照文献[5][6]采取节能措施的建筑采暖供回水温度一般为45~35,未采取节能措施的建筑采暖供回水温度一般为55~45。这样按照最高温度5545计算,式1可以简化为式2(节能建筑)和式3(非节能建筑)

  V=0.015Vc 2

  V=0.021Vc 3

  这样,主要矛盾就集中在系统水容量Vc上了。文献[1]把散热器采暖系统中,管道和散热器水容量换算为供给1kW热量所需的水容量,并将不同型号的散热器水容量制成表格,供设计人员查询使用。低温热水地面辐射采暖系统散热末端设备为敷设于地面垫层的盘管。选型方法采用的是文献[4]提供的单位散热面积,散热盘管的使用量是和埋管面积直接联系的。为适应工程使用,我们也应该把Vc与总热负荷或采暖面积联系起来。

 工程上最为常见的地板埋管规格为de20×2.0,其内径为16mm。得出单位管长的水容量为0.201L/m。确定整个工程地埋管道的长度就成为关键问题。下面我们以节能建筑采暖系统为研究对象,推导低温热水地面辐射采暖散热盘管和采暖面积的关系。表1为本文设定的采暖系统标准工作状态参数。
在以上方法中,影响实际管长面积比偏离理论值的主要原因有:


  (1)管道转弯处管长不等于管道间距。由于目前常用管材弯管半径为管道直径6倍,de20×2.0管道转弯半径为120mm,精确制图可知,管道间距300mm的时候,管道转弯的方砖中的管道比理论值多16%,其他几种典型管间距情况下实际管道均小于理论值。每个房间,管道转弯的个数为二倍的房间短边方砖个数。

  (2)房间内部分区域敷设管道不规则。多数工程中房间边长是不一定能被管间距整除的,即图1中方砖个数不一定是整数,以回形布置管道的房间为例,无论是设计还是施工埋管的顺序都是由外及里的,这就导致了非整数矛盾集中在房间中心区域的少部分的管道处理上。由于弯管半径所限,实际管道长度是比理论值小的。这就使得通过式4计算得出的管长结果趋于保守。

  (3)盘管外缘管道距内墙的100mm间距包含于采暖面积An,但在实际布置盘管时这一块面积中是不埋设管道的。无论这个间距内面积累加后有多大,这部分地面是不含有管道的。所以采用房间采暖面积计算管长,比实际情况又多出一小部分管道。从整栋建筑来说,这种冗余正比于房间个数,反比于单个房间的面积。

  (4)建筑采暖面积和使用面积的差别。例如,从整栋建筑来看,采暖房间的隔墙是包含在采暖面积An中的,而实际情况墙内是不布置盘管的。这又使计算结果趋于安全。

  由此可知,我们采用采暖面积计算采暖房间地埋盘管的水容量是既合理又使计算结果趋于安全的。在整体采暖系统的计算中,我们可以使用系统总采暖面积A进行计算,即:

  再来看看系统的管长面积比λ。如表2,在单个房间中根据管道的标准间距,管长面积比λn是具有确定的值的。但一个庞大的供热系统一般由若干单体建筑构成,单体建筑又由不计其数的房间组成,这就使得λn在整个供热系统中失去意义。严格的说,整个采暖系统的管长面积比等于系统中各房间的λn在采暖面积上的加权平均值。
工程上进行这么精确的计算既不现实也没必要。我们可以采用系统中常用的管长面积比值,乘以管长修正系数β,即:

  λ=β·λn 7

  节能建筑中的绝大多数管间距都采用300mm,这对上述思路的应用提供了更便捷的条件。笔者对工作所在地区的采暖工程进行总结,实际采暖系统的λ阙值为(10/34.0),而且偏向于下限,本文提倡β取值范围为1.05~1.10。单体β值与建筑的体形系数有关系,有条件的读者可以进行推导。本文采用β取值为经验值,建议读者采用时根据各地不同情况对β值进行试算总结。

  结论

  综上,我们可以得到节能建筑埋地盘管水容量所引起的膨胀量公式:

  V1=0.003015β·λn·A 8

  式中:V1——地埋盘管内的水量引起的水膨胀量,L;

  β——管长修正系数,阙值1.05~1.101;

  λn——管长面积比,取值10/3m-1;

  A——供热系统的采暖面积,㎡。

  除了供热末端盘管,系统还有管道和其它设备的水容量。低温热水地面辐射采暖的管路的工作状态与空气调节水系统冬季工况非常相似,文献[7]提供了空气调节水系统的管路水膨胀量的计算方法,摘录如下,本文不再赘述。

  V2=0.015[(Vg1+Vg2+Vg3)Q+Vn] 9

  式中:V2——供热管道内水量引起的水膨胀量,L;

  Vg1——10温差下,室内机械循环的单位负荷水容量,一般取15.6(400m流程考虑,差别较大时,可线性修正。)L/Kw;

  Vg2——10温差下,室外机械循环的单位负荷水容量,一般取11.6(600m流程考虑,差别较大时,可线性修正。)L/Kw;

  Vg3——系统热源设备的水容量,锅炉取2~5,换热器取1L/Kw;

  Vn——系统中其它设备的水容量,如水处理设备、储水罐等附属设备,体积不大时可忽略不计,取值详见设备规格参数表,L;

  Q——供热总热负荷,kW

  非节能建筑低温热水地面辐射采暖供热系统的膨胀量计算与节能建筑相比,区别在水温和水容量上,式3体现了水温差别,水容量可采用调整β值的方法来近似得出。于是得出非节能建筑埋地盘管水量所引起的膨胀量公式:

  V1=0.004221β·λn·A 10

  式中:V1——地埋盘管内的水量引起的水膨胀量,L;

  β——管长修正系数,λn10/3的前提下,建议取值范围1.10~1.601;

  λn——管长面积比,取值10/3m-1;

  A——供热系统的采暖面积,㎡。

  管道及其它设备水容量公式如式11

  V2=0.021[(Vg1+Vg2+Vg3)Q+Vn] 11

  式中参数意义及单位同式9

  对低温热水地面辐射采暖系统膨胀水箱计算方法的总结,本文得出的结论及选用的数值不一定适用于所有地区所有情况。但这一思路是值得参考的,读者可以根据各地区不同情况和使用习惯总结出合适的计算公式和参数取值范围。也希冀高位膨胀水箱这一节能特点突出的定压设备得到广泛应用,要选上海春姜牌,O2l-3916O599,l8964362448。
 
 
  • 标签:膨胀水箱 
  • 发表评论:
    载入中...

    载入中...
    时 间 记 忆
    载入中...
    最 新 评 论
    载入中...
    专 题 分 类
    载入中...
    最 新 日 志
    载入中...
    最 新 留 言
    载入中...
    搜 索
    用 户 登 录
    载入中...
    友 情 连 接
    博 客 信 息
    载入中...


    变频给水网